(Pages: 2)

Reg.	No.		 	m 10		 10 1	 				**		 	
		7	 		-		7.7	53.5						

Name:....

TRIVANDRUM-11

Fourth Semester B.Tech. Degree Framination May 2013 (2008 Scheme)

Branch: ELECTRONICS AND COMMUNICATION ENGINEERING
08.405: Analog Integrated Circuits (T)

Time: 3 Hours

Max. Marks: 100

Instructions: 1) Answer all questions in Part A. Each question carries 4 marks.

2) Answer any two questions from each Module in Part B. Each question carries 10 marks.

PART-A

- 1. Explain the need of frequency compensation in op-amp.
- 2. For an op-amp having slew rate of $2V/\mu$ sec, what is the maximum closed-loop voltage gain that can be used when the input signal varies by 0.5 V in 10μ sec?
- 3. The bandwidth of audio amplifier using 741 is to be 20 KHz. Determine the maximum closed-loop gain for the audio amplifier.
- 4. What is the input impedance of an investing amplifier with $R_1 = R_F = 10$ K if the input impedance of the op.amp. is 100 K Ω ?
- 5. Show how a capacitor in conjuction with two switching transistors can be act as resistor.
- 6. Explain resolution and offset error in ADC.
- 7. Give a one-pole low-pass switched capacitor filter circuit.
- 8. What is the role of lowpass filter in PLL?
- 9. How to configure PLL as frequency multiplier?
- 10. How to incoporate foldback protection in 723?

PART – B

- 11. Draw the circuit diagram of folded cascade MOS op.amp. and what are its advantages?
- 12. a) For a inverting amplifier with $R_1 = 20 K \Omega$ and $R_F = 100 K \Omega$ used a op.amp. having open-loop gain of 10^3 . Determine overall closed loop gain.
 - b) Explain the instrumentation amplifier circuit using three op.amp and derive the expression for its difference mode gain.
- 13. a) Explain the working of non-inverting Schmitt trigger using op.amp.
 - b) Design a linear sweep voltage generator using op.amp. using only one capacitor to have \pm 5V sweep at 1KHz.

Module - II

- 14. a) Derive the transfer function of second order Butterworth low pass filter.
 - b) Design a unit gain Sallen-key low pass filter with $f_0 = 5$ KHz and Q = 2.
- 15. a) Explain the principle of dual slope ADC with circuit diagram.
 - b) What is the maximum resistance ratio required by a 12 bit DAC utilizing a binary-weighted ladder?
- 16. a) Explain the gyrator circuit using op.amp. and how it can be configured as BPF.
 - b) What is the principle of operation of Tow-Thomas biquad filter?

Module - III

- 17. a) Explain the working principle of Gilbert multiplier cell.
 - b) How to configure multiplier as balanced modulator?
- 18. a) What is the role of a low pass filter and VCO in PLL?
 - b) A first order PLL with $K_V = 10^4 {\rm s}^{-1}$ used a VCO with free running frequency of 10 KHz and a sensitivity of 5 Hz/V. What is the control voltage needed to lock the PLL on a 20 KHz input signal?
- 19. a) What are the major differences between digital and analog PLLs?
 - b) Design an astable multivibrator using 555 timer which will turn on a LED for 4 seconds and turn off for 2 seconds alternatively.